Separability of Schur rings and Cayley graph isomorphism problem

Grigory Ryabov

Novosibirsk State University

Symmetry vs Regularity, Pilsen, July 1-7, 2018

S-rings

G is a finite group, e is the identity of G

A partition S of G is called a Schur partition if S satisfies the following properties:

• $\{e\} \in \mathcal{S}$,

•
$$X \in \mathcal{S} \Rightarrow X^{-1} \in \mathcal{S}$$
,

• for every $X, Y, Z \in S$ the number $c_{X,Y}^Z = |Y \cap X^{-1}z|$ does not depend on $z \in Z$.

A subring $\mathcal{A} \subseteq \mathbb{Z}G$ is called an *S*-ring (Schur ring) over *G* if there exists a Schur partition $\mathcal{S} = \mathcal{S}(\mathcal{A})$ such that $\mathcal{A} = Span_{\mathbb{Z}}\{\underline{X} : X \in \mathcal{S}\}$, where $\underline{X} = \sum_{x \in X} x$.

S-rings

G is a finite group, e is the identity of G

A partition S of G is called a Schur partition if S satisfies the following properties:

- $\{e\} \in \mathcal{S}$,
- $X \in \mathcal{S} \Rightarrow X^{-1} \in \mathcal{S}$,
- for every $X, Y, Z \in S$ the number $c_{X,Y}^Z = |Y \cap X^{-1}z|$ does not depend on $z \in Z$.

A subring $\mathcal{A} \subseteq \mathbb{Z}G$ is called an *S*-ring (Schur ring) over *G* if there exists a Schur partition $\mathcal{S} = \mathcal{S}(\mathcal{A})$ such that $\mathcal{A} = Span_{\mathbb{Z}}\{\underline{X} : X \in \mathcal{S}\}$, where $\underline{X} = \sum_{x \in X} x$.

•
$$\underline{X} \underline{Y} = \sum_{Z \in \mathcal{S}(\mathcal{A})} c_{X,Y}^{Z} \underline{Z}$$

- The numbers $c_{X,Y}^Z$ are the structure constants of \mathcal{A}
- \bullet The elements of ${\mathcal S}$ are called the basic sets of ${\mathcal A}$
- $\mathsf{rk}(\mathcal{A}) = |\mathcal{S}|$ is called the rank of \mathcal{A}

Isomorphisms of S-rings

 \mathcal{A} and $\mathcal{A}^{'}$ are S-rings over groups G and G' respectively.

- An algebraic isomorphism from A to A' is defined to be a bijection φ : S(A) → S(A') such that c^Z_{X,Y} = c^{Z^φ}_{X^φ,Y^φ} for every X, Y, Z ∈ S(A).
- The mapping $\underline{X} \to \underline{X}^{\varphi}$ is extended by linearity to the ring isomorphism of \mathcal{A} and \mathcal{A}' .

Isomorphisms of S-rings

 $\mathcal A$ and $\mathcal A^{'}$ are S-rings over groups G and G {'} respectively.

- An algebraic isomorphism from A to A' is defined to be a bijection φ : S(A) → S(A') such that c^Z_{X,Y} = c^{Z^φ}_{X^φ,Y^φ} for every X, Y, Z ∈ S(A).
- The mapping $\underline{X} \to \underline{X}^{\varphi}$ is extended by linearity to the ring isomorphism of \mathcal{A} and \mathcal{A}' .
- A (combinatorial) isomorphism from \mathcal{A} to \mathcal{A}' is defined to be a bijection $f: G \to G'$ such that for every basic set X of \mathcal{A} the set $X' = X^f$ is a basic set of \mathcal{A}' and f is an isomorphism of the Cayley graphs Cay(G, X) and Cay(G', X').
- Every combinatorial isomorphism of *S*-rings induces the algebraic one, however the converse statement is not true.

Separability

 ${\mathcal K}$ is a class of groups

An *S*-ring is said to be separable with respect to \mathcal{K} if every algebraic isomorphism from it to an *S*-ring over a group from \mathcal{K} is induced by a combinatorial isomorphism (Evdokimov-Ponomarenko, 2009).

- A separable *S*-ring is determined up to isomorphism only by the tensor of its structure constants.
- For every group G the S-ring of rank 2 over G and $\mathbb{Z}G$ are separable with respect to the class of all groups.

Separability

 ${\mathcal K}$ is a class of groups

An *S*-ring is said to be separable with respect to \mathcal{K} if every algebraic isomorphism from it to an *S*-ring over a group from \mathcal{K} is induced by a combinatorial isomorphism (Evdokimov-Ponomarenko, 2009).

- A separable *S*-ring is determined up to isomorphism only by the tensor of its structure constants.
- For every group G the S-ring of rank 2 over G and $\mathbb{Z}G$ are separable with respect to the class of all groups.

A finite group is said to be separable with respect to \mathcal{K} if every *S*-ring over this group is separable with respect to \mathcal{K} .

Problem Determine all (abelian) separable groups.

Separable groups

- C_n is the cyclic group of order n
- \mathcal{K}_C is the class of cyclic groups
- \mathcal{K}_A is the class of abelian groups
- \mathcal{K}_{G} is the class of groups isomorphic to a group G
- Groups of order \leq 15 are separable with respect to the class of all groups (follows from the computer calculations made by Hanaki and Miyamoto).
- For every group H with |H| ≥ 4 the group H × H is not separable with respect to K_{H×H} (follows from Golfand-Klin's result, 1985).
- Cyclic *p*-groups are separable with respect to \mathcal{K}_C (Evdokimov-Ponomarenko, 2015).
- There exists *n* such that C_n is not separable with respect to \mathcal{K}_{C_n} (Evdokimov-Ponomarenko, 2002).

Main results

Theorem 1 The group $C_p \times C_{p^k}$, where $p \in \{2,3\}$ and $k \ge 0$, is separable with respect to \mathcal{K}_A .

Theorem 2 An abelian group of order 4p is separable with respect to \mathcal{K}_A for every prime p.

Separability of *p*-*S*-rings

• p is a prime

An S-ring \mathcal{A} is called a *p*-S-ring if for every $X \in \mathcal{S}(\mathcal{A})$ there exists $k \geq 0$ such that $|X| = p^k$.

Separability of *p*-*S*-rings

• p is a prime

An S-ring \mathcal{A} is called a *p*-S-ring if for every $X \in \mathcal{S}(\mathcal{A})$ there exists $k \geq 0$ such that $|X| = p^k$.

Theorem 3

- If n ≤ 3 then every p-S-ring over an abelian group of order pⁿ is separable with respect to K_A.
- If n ≥ 4 then there exists a p-S-ring over Cⁿ_p which is not separable with respect to K_{Cⁿ_p}.

Separability and Cayley graph isomorphism problem

Proposition

Let \mathcal{K} be a class of groups and G a group separable with respect to \mathcal{K} . Suppose that G is given explicitly and |G| = n. Then for every Cayley graph Γ over G and every Cayley graph Γ' over an arbitrary explicitly given group from \mathcal{K} one can check in time poly(n) whether Γ and Γ' are isomorphic.

Separability and Cayley graph isomorphism problem

Proposition

Let \mathcal{K} be a class of groups and G a group separable with respect to \mathcal{K} . Suppose that G is given explicitly and |G| = n. Then for every Cayley graph Γ over G and every Cayley graph Γ' over an arbitrary explicitly given group from \mathcal{K} one can check in time poly(n) whether Γ and Γ' are isomorphic.

Corollary

Let $G \in \{C_2 \times C_{2^k}, C_3 \times C_{3^k}, C_{4p}, C_2 \times C_2 \times C_p\}$, where *p* is a prime and $k \ge 0$. Suppose that *G* is given explicitly and |G| = n. Then for every Cayley graph Γ over *G* and every Cayley graph Γ' over an arbitrary explicitly given abelian group one can check in time poly(*n*) whether Γ and Γ' are isomorphic.

Remark

It should be mentioned that the isomorphism problem for Cayley graphs over a group G was solved in the following cases:

- G is cyclic (Evdokimov-Ponomarenko, 2003; Muzychuk, 2004);
- $G = C_2 \times C_2 \times C_p$, where p is a prime (Nedela-Ponomarenko, 2017).

Proof of Proposition

- By using the Weisfeiler-Leman algorithm one can construct in time poly(n) the S-rings A and A' corresponding to Γ and Γ' respectively and the bijection φ : S(A) → S(A') such that:
 - if $\Gamma \cong \Gamma'$ then φ is an algebraic isomorphism;
 - if φ is an algebraic isomorphism then the set $Iso(\mathcal{A}, \mathcal{A}', \varphi)$ of all isomorphisms from \mathcal{A} to \mathcal{A}' inducing φ coincides with the set $Iso(\Gamma, \Gamma')$ of all isomorphisms from Γ to Γ' .
- One can test whether φ is an algebraic isomorphism in time poly(*n*) because A has at most n^3 structure constants.
- If φ is not an algebraic isomorphism then $\Gamma \ncong \Gamma'$.
- If φ is an algebraic isomorphism then in view of separability of G with respect to K, the set Iso(A, A', φ) = Iso(Γ, Γ') is not empty and hence Γ ≅ Γ'.

Schurity

- G is a finite group, e is the identity of G
- $G_{right} = \{x \mapsto xg, x \in G : g \in G\} \leq Sym(G)$
- Orb(K, G) is the set of all orbits of $K \leq Sym(G)$ on G

Proposition (Schur, 1933) Let $K \leq \text{Sym}(G)$ and $K \geq G_{right}$. Then $\text{Orb}(K_e, G)$ is a Schur partition.

- An S-ring \mathcal{A} over G is called schurian if $\mathcal{S}(\mathcal{A}) = \operatorname{Orb}(K_e, G)$ for some $K \leq \operatorname{Sym}(G)$ such that $K \geq G_{right}$.
- A finite group *G* is called a Schur group if every *S*-ring over *G* is schurian (Pöschel, 1974).

The following groups are Schur:

- $\bullet\,$ groups of order \leq 15 (follows from the computer calculations made by Fiedler, 1998);
- cyclic *p*-groups (Pöschel, 1974);
- $C_2 \times C_{2^k}$ (Muzychuk-Ponomarenko, 2015);
- $C_3 \times C_{3^k}$ (Ryabov, 2015);
- $C_2 \times C_2 \times C_p$, where *p* is a prime (Evdokimov-Kovács-Ponomarenko, 2013).
- So all known separable groups are Schur.

The group $H \times H$ is non-Schur and non-separable whenever H is abelian, $|H| \ge 4$, and $H \ne C_2 \times C_2$.

- Non-schurity follows from the necessary conditions of schurity for abelian groups (Evdokimov-Kovács-Ponomarenko, 2013).
- Non-separability follows from Golfand-Klin's result (1985).

The group $H \times H$ is non-Schur and non-separable whenever H is abelian, $|H| \ge 4$, and $H \ne C_2 \times C_2$.

- Non-schurity follows from the necessary conditions of schurity for abelian groups (Evdokimov-Kovács-Ponomarenko, 2013).
- Non-separability follows from Golfand-Klin's result (1985).
- The groups C_2^4 , C_2^5 are Schur and non-separable.
 - Schurity follows from the computer calculations made by Fiedler (1998) for C_2^4 and by Pech and Reichard (2009) for C_2^5 .
 - Non-separability follows from Golfand-Klin's result (1985).

The group $H \times H$ is non-Schur and non-separable whenever H is abelian, $|H| \ge 4$, and $H \ne C_2 \times C_2$.

- Non-schurity follows from the necessary conditions of schurity for abelian groups (Evdokimov-Kovács-Ponomarenko, 2013).
- Non-separability follows from Golfand-Klin's result (1985).
- The groups C_2^4 , C_2^5 are Schur and non-separable.
 - Schurity follows from the computer calculations made by Fiedler (1998) for C_2^4 and by Pech and Reichard (2009) for C_2^5 .
 - Non-separability follows from Golfand-Klin's result (1985).

Question

Does a non-Schur separable group exist?

Let p be a prime.

- If n ≤ 3 then every p-S-ring over an abelian group of order pⁿ is schurian (Kim, 2014).
- If p is odd and n ≥ 4 then there exists a non-schurian p-S-ring over Cⁿ_p.
- If n ≥ 6 then there exists a non-schurian 2-S-ring over C₂ⁿ (Evdokimov-Kovács-Ponomarenko, 2013).