Stabilization Algorithms for Configurations

Sven Reichard

TU Dresden
<2018-07-02 Mo>

Outline

Basics

Binary coherent configurations

Generalization

Numbers, Tuples

- We identify the natural number n with the set $\{0, \ldots, n-1\}$ of all smaller numbers.
- If we want to emphasize the "setness" we will write $[n]$ instead of n.
- Tuples over a set Ω are functions $\mathrm{x}:[\mathrm{n}] \rightarrow \Omega$
- As usual we denote the set of all function from A to B by B^{A}.
- In particular, the set of all n-tuples of B is $B^{[n]}=B^{n}$.

Kernels, equivalence relations

- Given $f: A \rightarrow B$, its kernel is the relation

$$
\operatorname{ker} f=\left\{(x, y) \in A^{2} \mid f(x)=f(y)\right\}
$$

This is an equivalence relation.

Tuples and permutations

- By $S(A)$ we denote the symmetric group of all permutations of A. Since permutations are functions they act on the left.
- If $x \in A^{n}$ and $\sigma \in S([n])$, then $x \circ \sigma$ is the permuted tuple: $(x \circ \sigma)(i)=x_{\sigma(i)}$.
- If x is as above, and $\varphi \in S(A)$, then $\varphi \circ x$ is the coordinatewise image of x under φ :

$$
(\varphi \circ x)(i)=\varphi\left(x_{i}\right)
$$

So,

$$
\varphi \circ x=\left(\varphi\left(x_{0}\right), \ldots, \varphi\left(x_{n-1}\right)\right) .
$$

Refinement of functions

- For functions $f: A \rightarrow B, g: A \rightarrow C$, we say $f \preceq g$ if $\operatorname{ker} f \subseteq \operatorname{ker} g$. In the case of equality we write $\mathrm{f} \sim \mathrm{g}$. If $B=C$ we get a quasiorder on B^{A}
- If B is at most countable, then for any $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ there is a $g: A \rightarrow \mathbb{N}$ with $f \sim g$. So below we can restrict ourselves to functions with codomain \mathbb{N}
- So we may translate between functions, equivalence relations and partitions

Binary coherent configurations

Introduction

- We recall the definition and motivation of coherent configurations.
- Later we will formalize and generalize these notions.

Colorings

- A k-coloring of Ω is a function

$$
r: \Omega^{k} \rightarrow C
$$

that assigns to each k-tuple in Ω a color from a set C.

- For $k=2$ we think of a coloring of the edges of the complete graph on Ω.
- For now we look at the binary case and recall the notion of coherent configurations.

Binary configurations

- A binary coloring r of Ω is a configuration if the following properties hold:

1. Reflexive pairs and irreflexive pairs do not share colors;
2. If $r(x, y)=r\left(x^{\prime}, y^{\prime}\right)$, then $r(y, x)=r\left(y^{\prime}, x^{\prime}\right)$.

- Some people refer to configurations as rainbows.

Different languages

- Given a binary coloring r the preimage of each color is a binary relation on Ω.
- Hence a coloring defines a set of binary relations on Ω such that Ω^{2} is its disjoint union.
- Conversely, any such system of relations defines a coloring.

Configurations as systems of relations

- In these terms we can define binary configurations as follows:
- A set S of binary relations on Ω is a configuration if
- each relation is reflexive or irreflexive
- if $s \in S$ then $s^{*} \in S$.
- Here, $s^{*}=\{(y, x) \mid(x, y) \in s\}$ is the inverse of s.
- We will switch freely between the languages of colorings and relations

2-homogeneous configurations

- Let G be a group acting on Ω
- The orbits of G on Ω^{2} form a configuration
- We say that a configuration is 2 -homogeneous if it "comes from a group"
- More formally it means that the automorphism group acts transitively on each of the relations (better definition will follow)

Example: C_{6}

- Define the following configuration on $\Omega=\mathrm{Z}_{6}$:
- $\mathrm{R}_{0}=\{(\mathrm{x}, \mathrm{x}) \mid \mathrm{x} \in \Omega\}$
- $\mathrm{R}_{1}=\{(\mathrm{x}, \mathrm{y}) \mid \mathrm{x}-\mathrm{y} \in\{1,5\}\}$
- $R_{2}=\Omega^{2} \backslash\left(R_{0} \cup R_{1}\right)$
- This is a configuration.
- Does it come from a group?

Invariants

- Given a configuration we may define invariants on pairs of points.
- For example, we can count triangles of given given colors
- Given $(x, y) \in \Omega^{2}$ and colors i, j, we count

$$
\{z \in \Omega \mid r(x, z)=i, r(z, y)=j\}
$$

- In the C_{6} example this allows us to distinguish long and short diagonals

Stabilization

- Such invariants can be used to refine the given coloring
- Configurations stable under this refinement are called coherent
- 2-homogeneous configurations are always coherent
- The converse does not hold.

Weisfeiler-Leman

- Each coloring has a unique "smallest" coherent refinement
- We call it the coherent closure
- This is in turn refined by the 2-orbits of the automorphism group
- So we get a "combinatorial approximation" of the automorphism group
- The coherent closure can be computed in polynomial time, this was first described by Weisfeiler and Leman
- Several practical implementations were described by Babel, Chuvaeva, Klin, Pasechnik in the 1990's
- We might see an example of such calculations at the end of the presentation

General configurations

- We generalize the notion of coherent configurations in several aspects:
- Instead of binary configurations we consider arbitrary arity
- Instead of triangles we count substructures of arbitrary size.
- It is often convenient to use the language of colorings
- But what are useful generalizations of the axioms of configurations?

Plan

- We look at the defining properties of binary configurations and coherent configurations one by one
- We try to give "natural" generalizations for colorings of higher arity
- This will lead objects similar to systems of k-orbits of groups.

Reflexive/irreflexive

- The first property of binary configurations states that reflexive and irreflexive pairs have different colors
- Irreflexive pairs have a discrete kernel; reflexive pairs have a trivial kernel
- So the first condition for a k-ary coloring r is:
- If $r(x)=r(y)$, then $\operatorname{ker}(x)=\operatorname{ker}(y)$.

Inverses

- The second property was: If two pairs have the same color, then the reverse pairs also have the same color
- For k-tuples we can apply arbitrary permutations:
- If $r(x)=r(y)$, and $\sigma \in S_{k}$, then $r(x \circ \sigma)=r(y \circ \sigma)$

k-ary configurations

- Let $r: \Omega^{k} \rightarrow C$ be a k-coloring.
- We call r a k-ary configuration if the following conditions hold:
- For $x, y \in \Omega^{k}: r(x)=r(y) \Longrightarrow \operatorname{ker}(x)=\operatorname{ker}(y)$
- For $\sigma \in S_{k}$, if $r(x)=r(y)$ then $r(x \circ \sigma)=r(y \circ \sigma)$.
- We call $|\Omega|$ the order of r; k its arity, and the cardinality $\left|r\left(\Omega^{k}\right)\right|$ of its image the rank of r.

Group configurations

- Let G be a group acting on Ω.
- For $x \in \Omega^{k}$ and $g \in G$ we have $g \circ x \in \Omega^{k}$.
- This defines an action of G on Ω^{k}.
- The orbits of this action form a k-ary configuration $(G, \Omega)^{k}$
- For now we call these group configurations

Subconfigurations

- Let r be a k-ary coloring on Ω
- Let $x \in \Omega^{m}$ be a tuple
- Let $x^{k}:[m]^{k} \rightarrow \Omega^{k}$ be the k-fold tupling of x
- Then $r \circ x^{k}$ is a k-ary coloring of [m], the coloring r_{x} induced by x.

Lemma

If r is a configuration and x is one-to-one then r_{x} is a configuration.

Homomorphisms

- Let $W_{1}=\left(\Omega_{1}, C_{1}, r_{1}\right)$ and $W_{2}\left(\Omega_{2}, C_{2}, r_{2}\right)$ be k-ary structures. Let $\varphi: \Omega_{1} \rightarrow \Omega_{2}$ be a function.
- φ is a weak homomorphism if for any $x, y \in \Omega_{1}^{k}$ we have $r_{1}(x)=r_{1}(y) \Longrightarrow r_{2}(\varphi(x))=r_{2}(\varphi(y))$. We write $\varphi: W_{1} \rightarrow W_{2}$.
- φ is a strong homomorphism if $r_{2} \circ \varphi=r_{1}$.
- A bijective strong homomorphism is an isomorphism

Homogeneity

- Let r be a k-ary configuration.
- If every isomorphism between subconfigurations of order at most m extends to an automorphism, we say that r is m-homogeneous.
- More formally: r is m-homogeneous if for any $x, y \in \Omega^{m}$ with $r_{x}=r_{y}$ there is an automorphism σ of r with

$$
y=x \circ \sigma
$$

Lemma
W is k-homogeneous iff it is a group configuration.

Extensions of vectors

- Let $n \geq m, x \in A^{m}, y \in A^{n}$. We call y an n-extension of x if they coincide on the first m coordinates, i.e., $x=\left.y\right|_{[m]}$.
- Denote the set of all extensions of x by

$$
A_{x}^{n}=\left\{y \in A^{n}|y|_{[m]}=x\right\}
$$

- We denote multisets by using square brackets. E.g.,

$$
\left[x^{2} \mid x \in \mathbb{Z},-2 \leq x \leq 2\right]=[0,1,1,4,4]
$$

(m,t)-invariant

- Let $W=(\Omega, C, r)$ be a k-ary configuration.
- Let $t \geq m \geq k$, let $x \in \Omega^{m}$.
- We consider the multiset of configurations induced by all t-extensions of x.

$$
W_{x}^{t}=\left[W_{y} \mid y \in \Omega_{x}^{t}\right]
$$

Lemma

This invariant can be computed in polynomial time.

(m,t)-coherent configurations

We say that W is (m, t)-coherent if it is stable under this invariant.
Lemma
If $m^{\prime} \leq m$ and $t^{\prime} \leq t$ then any (m, t)-coherent configuration is (m^{\prime}, t^{\prime})-coherent.

(k, t)-coherent closure

- Any k-ary configuration has a unique smallest (k, t)-coherent closure.
- This closure can be computed in time $n^{O(t)}$.
- This constitutes a Schurian polynomial approximation scheme in the sense of Evdokimov-Ponomarenko, 1999

Connection to other notions of regularity

Lemma

A k-ary configuration is coherent if and only if it is
($k, k+1$)-coherent.

- In particular, classical (binary) coherent configurations are precisely (2,3)-coherent.
- Hestenes and Higman introduced the t-vertex condition for graphs to get a stronger combinatorial characterization of rank 3 groups
Lemma
A binary configuration satisfies the t-vertex condition if and only if it is $(2, t)$-coherent.

Lemma

A k-ary configuration of order n is m-homogeneous if and only if it is (m, n)-coherent.

- So we have a family of properties for k-ary configurations which subsumes several regularity conditions considered earlier.

Implementation

- We have an implementation that computes (m, t)-coherent closures
- It still needs some optimization
- However it is a working program for this general problem
- The code will be available at
- http://www.github.com/sven-reichard/stabilization

Demonstration

- Classical WL-Stabilization for Möbius ladders
- (2,4)-stabilization of Shrikhande's graph

Main question

- Are there (m, t)-coherent configurations which are not m -homogeneous, for large values of m and/or t ?
- If yes, these should be rare and interesting objects.
- If not, we have solved the isomorphism problem

A related notion and examples

- Pech has introduced a similar notion for simple graphs
- His concept corresponds to (m, t)-coherence of binary configurations with three colors.
- He gives examples of (3,7)-coherent graphs arising from generalized quadrangles.

Emacs 24.5.1 (Org mode 8.2.10)

