Dale Mesner and his contributions to Algebraic Combinatorics

Symmetry vs. regulari Pilsen July 5, 2018

robert.jajcay@fmph.uniba.sk

Dale Marsh Mesner

1923 - 2009

robert.jajcay@fmph.uniba.sk

born April 13, 1923, in Central City, Nebraska,

- - born April 13, 1923, in Central City, Nebraska,

the oldest of seven children in a Quaker family

two-room elementary school near Central City, NE

born April 13, 1923, in Central City, Nebraska,

- two-room elementary school near Central City, NE
- graduated from high school in Central City in 1940

born April 13, 1923, in Central City, Nebraska,

- two-room elementary school near Central City, NE
- graduated from high school in Central City in 1940
- attended the Nebraska Central College in Central City

born April 13, 1923, in Central City, Nebraska,

- two-room elementary school near Central City, NE
- graduated from high school in Central City in 1940
- attended the Nebraska Central College in Central City
- 1948, undergraduate degree in Mathematics, Lincoln, Nebraska

born April 13, 1923, in Central City, Nebraska,

- two-room elementary school near Central City, NE
- graduated from high school in Central City in 1940
- attended the Nebraska Central College in Central City
- 1948, undergraduate degree in Mathematics, Lincoln, Nebraska
- 1950, began graduate work at Michigan State; working toward a Ph.D. in Statistics,

born April 13, 1923, in Central City, Nebraska,

- two-room elementary school near Central City, NE
- graduated from high school in Central City in 1940
- attended the Nebraska Central College in Central City
- 1948, undergraduate degree in Mathematics, Lincoln, Nebraska
- 1950, began graduate work at Michigan State; working toward a Ph.D. in Statistics,
- May 22, 1956, defended dissertation under the advisement of Leo Katz, entitled: An Investigation of Certain Combinatorial Properties of Partially Balanced Incomplete Block Experimental Designs and Association Schemes, with a Detailed Study of Designs of Latin Squares and Related Types

in his dissertation, Dale dealt with a combinatorial structure that became later known as the Higman-Sims graph

- in his dissertation, Dale dealt with a combinatorial structure that became later known as the Higman-Sims graph
- this was probably the first mention of this important object (officially discovered in 1968)

- in his dissertation, Dale dealt with a combinatorial structure that became later known as the Higman-Sims graph
- this was probably the first mention of this important object (officially discovered in 1968)
- it is the unique strongly regular graph on 100 vertices of degree k = 22 and with the regularity parameters λ = 0 and μ = 6, and its full automorphism group is an extension of the sporadic simple *Higman-Sims group*

- in his dissertation, Dale dealt with a combinatorial structure that became later known as the Higman-Sims graph
- this was probably the first mention of this important object (officially discovered in 1968)
- it is the unique strongly regular graph on 100 vertices of degree k = 22 and with the regularity parameters λ = 0 and μ = 6, and its full automorphism group is an extension of the sporadic simple *Higman-Sims group*
- the graph appears in Dale's dissertation as a special case of a new family of association schemes called negative Latin square schemes (denoted NL_g(n))

- in his dissertation, Dale dealt with a combinatorial structure that became later known as the Higman-Sims graph
- this was probably the first mention of this important object (officially discovered in 1968)
- it is the unique strongly regular graph on 100 vertices of degree k = 22 and with the regularity parameters λ = 0 and μ = 6, and its full automorphism group is an extension of the sporadic simple *Higman-Sims group*
- the graph appears in Dale's dissertation as a special case of a new family of association schemes called negative Latin square schemes (denoted NL_g(n))
- Dale later wrote a paper about these schemes, but made only a brief mention of the Higman-Sims case NL₂(10)

- in his dissertation, Dale dealt with a combinatorial structure that became later known as the Higman-Sims graph
- this was probably the first mention of this important object (officially discovered in 1968)
- it is the unique strongly regular graph on 100 vertices of degree k = 22 and with the regularity parameters λ = 0 and μ = 6, and its full automorphism group is an extension of the sporadic simple *Higman-Sims group*
- the graph appears in Dale's dissertation as a special case of a new family of association schemes called negative Latin square schemes (denoted NL_g(n))
- Dale later wrote a paper about these schemes, but made only a brief mention of the Higman-Sims case NL₂(10)
- he based his construction on a certain 2 (22, 6, 5) design without realizing that it was also a 3 - (22, 6, 1) design

- in his dissertation, Dale dealt with a combinatorial structure that became later known as the Higman-Sims graph
- this was probably the first mention of this important object (officially discovered in 1968)
- it is the unique strongly regular graph on 100 vertices of degree k = 22 and with the regularity parameters λ = 0 and μ = 6, and its full automorphism group is an extension of the sporadic simple *Higman-Sims group*
- the graph appears in Dale's dissertation as a special case of a new family of association schemes called negative Latin square schemes (denoted NL_g(n))
- Dale later wrote a paper about these schemes, but made only a brief mention of the Higman-Sims case NL₂(10)
- he based his construction on a certain 2 (22, 6, 5) design without realizing that it was also a 3 - (22, 6, 1) design
- he also did not consider any automorphism groups

Higman-Sims Graph

robert.jajcay@fmph.uniba.sk

Mesner and Higman-Sims Graph

Among the people who became aware of his contribution were

- ▶ J. J. Seidel at Eindhoven, who saw the dissertation in 1968
- Ernie Shult at Kansas State (1975)
- Spyros S. Magliveras (1978)
- Vladimir Tonchev (1995)

Mesner and Higman-Sims Graph

Among the people who became aware of his contribution were

- ► J. J. Seidel at Eindhoven, who saw the dissertation in 1968
- Ernie Shult at Kansas State (1975)
- Spyros S. Magliveras (1978)
- Vladimir Tonchev (1995)

T.B. Jajcayova and R. Jajcay, **On the contributions of D.M. Mesner**, *Bull. Inst. Combin. Appl.* 36 (2002), pp. 46-52.

E. Bannai, R.L. Griess Jr., C.E. Praeger, and L. Scott, **The Mathematics of Donald Gordon Higman**, *Michigan Math. J.* 58 (2009).

M.H. Klin and A.J. Woldar, **Dale Mesner, Higman & Sims, and** the strongly regular graph with parameters (100,22,0,6), *Bull. Inst. Comb. Appl.* 63, 13-35 (2011).

A k-class association scheme A on a set X consists of k + 1 non-empty symmetric binary relations
 R₀ = {(x,x) | x ∈ X}, R₁,..., R_k on X which partition the product X × X and satisfy the "regularity" condition: for each 0 ≤ l, i, j ≤ k, there exists a nonnegative integer p^l_{ij} such that for any (x, y) ∈ R_l there are exactly p^l_{ij} elements z ∈ X such that (x, z) ∈ R_i and (z, y) ∈ R_j

- A k-class association scheme A on a set X consists of k + 1 non-empty symmetric binary relations
 R₀ = {(x,x) | x ∈ X}, R₁,..., R_k on X which partition the product X × X and satisfy the "regularity" condition: for each 0 ≤ l, i, j ≤ k, there exists a nonnegative integer p^l_{ij} such that for any (x, y) ∈ R_l there are exactly p^l_{ij} elements z ∈ X such that (x, z) ∈ R_i and (z, y) ∈ R_j
- ▶ the adjacency matrices of the association scheme A are the $|X| \times |X|$ matrices A_i , $0 \le i \le k$, defined by the rule $A_i(x, y) = 1$ if $(x, y) \in R_i$ and $A_i(x, y) = 0$ otherwise

- A k-class association scheme A on a set X consists of k + 1 non-empty symmetric binary relations
 R₀ = {(x,x) | x ∈ X}, R₁,..., R_k on X which partition the product X × X and satisfy the "regularity" condition: for each 0 ≤ l, i, j ≤ k, there exists a nonnegative integer p^l_{ij} such that for any (x, y) ∈ R_l there are exactly p^l_{ij} elements z ∈ X such that (x, z) ∈ R_i and (z, y) ∈ R_j
- ▶ the adjacency matrices of the association scheme A are the $|X| \times |X|$ matrices A_i , $0 \le i \le k$, defined by the rule $A_i(x, y) = 1$ if $(x, y) \in R_i$ and $A_i(x, y) = 0$ otherwise
- ► the linear span of the matrices A_i, 0 ≤ i ≤ k, over the reals, is the Bose-Mesner algebra of the scheme

Bose-Mesner Algebras

Many interesting combinatorial structures (e.g., *strongly regular* graphs, distance regular graphs, codes, Johnson schemes, Hamming schemes) are either association schemes themselves or arise from association schemes.

Bose-Mesner Algebras

Many interesting combinatorial structures (e.g., *strongly regular* graphs, distance regular graphs, codes, Johnson schemes, Hamming schemes) are either association schemes themselves or arise from association schemes.

Introducing the Bose-Mesner algebras of these schemes allows one the use of the powerful tools of linear algebra, and naturally yields many beautiful results.

Bose-Mesner Algebras

Many interesting combinatorial structures (e.g., *strongly regular* graphs, distance regular graphs, codes, Johnson schemes, Hamming schemes) are either association schemes themselves or arise from association schemes.

Introducing the Bose-Mesner algebras of these schemes allows one the use of the powerful tools of linear algebra, and naturally yields many beautiful results.

Today, the concept of a Bose-Mesner algebra has become a "text-book item" of relevance to anyone interested in combinatorics.

Dale Marsh Mesner

 1957-58, post-doctoral position at the Statistical Engineering Laboratory of the National Bureau of Standards, Washington, D.C.

- 1957-58, post-doctoral position at the Statistical Engineering Laboratory of the National Bureau of Standards, Washington, D.C.
- 1958 1963, Asst. Prof. at Purdue University, West Lafayette, IN.

- 1957-58, post-doctoral position at the Statistical Engineering Laboratory of the National Bureau of Standards, Washington, D.C.
- 1958 1963, Asst. Prof. at Purdue University, West Lafayette, IN.
- 1963-1964, visit with R.C. Bose as a Research Associate in the Department of Statistics, UNC, Chapel Hill, NC

- 1957-58, post-doctoral position at the Statistical Engineering Laboratory of the National Bureau of Standards, Washington, D.C.
- 1958 1963, Asst. Prof. at Purdue University, West Lafayette, IN.
- 1963-1964, visit with R.C. Bose as a Research Associate in the Department of Statistics, UNC, Chapel Hill, NC
- 1964-66, stayed at UNC, Department of Mathematics, two papers with M. E. Watkins

In 1966, Dale returned to Nebraska, Department of Mathematics and Statistics at the University of Nebraska-Lincoln.

In 1966, Dale returned to Nebraska, Department of Mathematics and Statistics at the University of Nebraska-Lincoln. Four years later he was joined by Earl S. Kramer.

In 1966, Dale returned to Nebraska, Department of Mathematics and Statistics at the University of Nebraska-Lincoln. Four years later he was joined by Earl S. Kramer. He became full professor in 1982 and retired in 1989.

robert.jajcay@fmph.uniba.sk

robert.jajcay@fmph.uniba.sk

robert.jajcay@fmph.uniba.sk

Kramer-Mesner matrices are incidence matrices that allow one to construct t-designs invariant under a prescribed group.

- a t − (v, k, λ) design (X, B) is G-invariant if the image of every k-block B ∈ B is again a block in B
- the Kramer-Mesner matrices formalize the precise conditions under which G-orbits on X_k can be selected to form a t - (v, k, λ) design

Theorem

Let $\mathbf{A} = A_{t,k}$ denote the $\rho_t \times \rho_k$ matrix whose entries a_{ij} count the number of k-subsets in the j-th orbit of the action of G on X_k that contain (any) fixed t-subset from the i-th orbit of G on X_t .

There exists a G-invariant $t - (v, k, \lambda)$ design (X, \mathcal{B}) if and only if there exists a solution vector **u** to the matrix equation

$\mathbf{A}\mathbf{u} = \lambda \mathbf{J},$

where $\mathbf{A} = A_{t,k}$, \mathbf{u} is ρ_k -dimensional vector of non-negative integral entries, \mathbf{J} is the vector of all 1's, and λ is a positive integer. The t-design is simple iff the vector \mathbf{u} is 0-1.

Given a finite simple graph $\Gamma,$ find a 'small' strongly regular $\tilde{\Gamma}$ such that Γ is isomorphic to an induced subgraph of $\tilde{\Gamma}.$

1. Let F be a finite field, and consider the Desarguesian affine plane geometry coordinatized by F. It contains n^2 points (x, y), n^2 lines of the form y = mx + b, $m, b \in F$, and nvertical lines; all the lines contain n points.

- 1. Let F be a finite field, and consider the Desarguesian affine plane geometry coordinatized by F. It contains n^2 points (x, y), n^2 lines of the form y = mx + b, $m, b \in F$, and n vertical lines; all the lines contain n points.
- 2. The vertices of the strongly regular graph based on the Desarguesian affine plane F^2 are the n^2 points (x, y). To define the edges, choose any $2 \le g \le n+1$, and any g of the n+1 parallel classes of lines in the geometry. Two vertices of the graph are adjacent iff the line joining them in the geometry is one of the selected lines.

- 1. Let F be a finite field, and consider the Desarguesian affine plane geometry coordinatized by F. It contains n^2 points (x, y), n^2 lines of the form y = mx + b, $m, b \in F$, and n vertical lines; all the lines contain n points.
- 2. The vertices of the strongly regular graph based on the Desarguesian affine plane F^2 are the n^2 points (x, y). To define the edges, choose any $2 \le g \le n+1$, and any g of the n+1 parallel classes of lines in the geometry. Two vertices of the graph are adjacent iff the line joining them in the geometry is one of the selected lines.

$$srg(n^2, g(n-1), n-2+(g-1)(g-2), g(g-1)).$$

Theorem (RJ, Mesner)

If Γ is a finite simple graph, then there exists a strongly regular graph $\tilde{\Gamma}$ which has an induced subgraph isomorphic to Γ .

Theorem (RJ, Mesner)

If Γ is a finite simple graph, then there exists a strongly regular graph $\tilde{\Gamma}$ which has an induced subgraph isomorphic to Γ .

Proof.

1. Γ has v vertices and e edges

Theorem (RJ, Mesner)

If Γ is a finite simple graph, then there exists a strongly regular graph $\tilde{\Gamma}$ which has an induced subgraph isomorphic to Γ .

- 1. Γ has v vertices and e edges
- 2. in an affine plane of sufficiently large order q, choose a set S of v points such that the v(v-1)/2 lines joining the points in pairs have distinct slopes

If Γ is a finite simple graph, then there exists a strongly regular graph $\tilde{\Gamma}$ which has an induced subgraph isomorphic to Γ .

- 1. Γ has v vertices and e edges
- 2. in an affine plane of sufficiently large order q, choose a set S of v points such that the v(v-1)/2 lines joining the points in pairs have distinct slopes
- 3. associate each vertex of Γ with a vertex in S, for each edge in Γ choose the associated slope

If Γ is a finite simple graph, then there exists a strongly regular graph $\tilde{\Gamma}$ which has an induced subgraph isomorphic to Γ .

- 1. Γ has v vertices and e edges
- 2. in an affine plane of sufficiently large order q, choose a set S of v points such that the v(v-1)/2 lines joining the points in pairs have distinct slopes
- 3. associate each vertex of Γ with a vertex in S, for each edge in Γ choose the associated slope
- 4. construct the srg $\widetilde{\Gamma}$ with the q^2 vertices and slopes given by the edges of Γ

If Γ is a finite simple graph, then there exists a strongly regular graph $\tilde{\Gamma}$ which has an induced subgraph isomorphic to Γ .

- 1. Γ has v vertices and e edges
- 2. in an affine plane of sufficiently large order q, choose a set S of v points such that the v(v-1)/2 lines joining the points in pairs have distinct slopes
- 3. associate each vertex of Γ with a vertex in S, for each edge in Γ choose the associated slope
- 4. construct the srg $\widetilde{\Gamma}$ with the q^2 vertices and slopes given by the edges of Γ
- 5. the bijection $\phi: V(\Gamma) \to S$ is an embedding of Γ into $\tilde{\Gamma}$.

Definition (Sidon, 1933)

Let G be a finite abelian group. A subset $D = \{x_1, x_2, ..., x_k\}$ of G is a **Sidon set** in G provided the set of sums $\{x_i + x_j | x_i, x_j \in D, i \leq j\}$ of pairs of elements from D consists of (k(k-1)/2) + k distinct elements of G (i.e. no two of the sums are equal).

Definition (Sidon, 1933)

Let G be a finite abelian group. A subset $D = \{x_1, x_2, ..., x_k\}$ of G is a **Sidon set** in G provided the set of sums $\{x_i + x_j | x_i, x_j \in D, i \leq j\}$ of pairs of elements from D consists of (k(k-1)/2) + k distinct elements of G (i.e. no two of the sums are equal).

Lemma (Erdös, Turán, 1941)

Let G be a finite cyclic group of order n. Then G contains a Sidon set D of size $cn^{1/2}$.

Embedding Finite Simple Graphs into Small SRG's

Theorem (RJ, Mesner)

If Γ is a finite simple graph on v vertices, then there exists a strongly regular graph $\tilde{\Gamma}$ on $O(v^4)$ vertices that contains an induced subgraph isomorphic to Γ .

Proof.

1. let F be a field on q elements

If Γ is a finite simple graph on v vertices, then there exists a strongly regular graph $\tilde{\Gamma}$ on $O(v^4)$ vertices that contains an induced subgraph isomorphic to Γ .

- 1. let F be a field on q elements
- 2. let $D = \{x_1, x_2, \dots, x_v\}$ be a Sidon set in (F, +)

If Γ is a finite simple graph on v vertices, then there exists a strongly regular graph $\tilde{\Gamma}$ on $O(v^4)$ vertices that contains an induced subgraph isomorphic to Γ .

- 1. let F be a field on q elements
- 2. let $D = \{x_1, x_2, \dots, x_v\}$ be a Sidon set in (F, +)
- 3. take S to be the set $\{(x_1, x_1^2), (x_2, x_2^2), \dots, (x_v, x_v^2)\}$

If Γ is a finite simple graph on v vertices, then there exists a strongly regular graph $\tilde{\Gamma}$ on $O(v^4)$ vertices that contains an induced subgraph isomorphic to Γ .

- 1. let F be a field on q elements
- 2. let $D = \{x_1, x_2, \dots, x_v\}$ be a Sidon set in (F, +)
- 3. take S to be the set $\{(x_1, x_1^2), (x_2, x_2^2), \dots, (x_v, x_v^2)\}$
- 4. all the lines determined by pairs of points in *S* have different slopes:

$$(x_{i_2}^2 - x_{i_1}^2)/(x_{i_2} - x_{i_1}) = x_{i_2} + x_{i_1}$$

 $(x_{i_4}^2 - x_{i_3}^2)/(x_{i_4} - x_{i_3}) = x_{i_4} + x_{i_3},$

THANK YOU

26.8.-30.8.2019

EUROCOMB 2019 in Bratislava Algebraic graph theory is welcome!

robert.jajcay@fmph.uniba.sk Dale Marsh Mesner

Barcelona, Berlin, Bordeaux, Budapest, Bergen Bratislava!