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Examples of geom. structures on knots complements in S3

1975 R. Riley found first examples of hyperbolic structures on seven
excellent knots and links in S3.
1977 W. Thurston showed that a complement of any prime knot admits a
hyperbolic structure if this knot is not toric or satellite one.

1980 W. Thurston constructed a hyperbolic 3-manifold homeomorphic to
the complement of knot 41 in S3 by gluing faces of two regular ideal
tetrahedra. This manifold has a complete hyperbolic structure.

1982 J. Minkus suggested a general topological construction for the
orbifold whose singular set is a two-bridge knot in S3.
1998/2006 A. Mednykh, A. Rasskazov found a geometrical realisation of
the Minkus construction in H3,S3,E3.

2009 E. Molnár, J. Szirmai, A. Vesnin realised the figure-eight knot
cone-manifold in the five exotic Thurston’s geometries.

2004 H. Hilden, J. Montesinos, D. Tejada, M. Toro considered more
general construction known as butterfly.
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Upper half-space model of hyperbolic 3-space

Denote by H3 a 3-dim hyperbolic space (Lobachevsky–Bolyai–Gauss space).

H3 can be modelled in R3
+ = {(x , y , t) : x , y , t ∈ R, t > 0} with metric s

given by expression ds2 =
dx2 + dy2 + dt2

t2
.

The boundary ∂H3 = {(x , y , 0) : x , y ∈ R} caled absolute and consist of
points at infinity.

Isometry group Isom(H3) is a group of all actions on H3 preserving the
metric s. Denote by Isom+(H3) the group of orientation preserving
isometries.

Isom+(H3) ∼= PSL(2,C) (Pozitive Special Lorentz group). An element

g =

(
a b
c d

)
∈ PSL(2,C) acts on H3 by the rule

g : (z , t) 7→

(
(az + b)(cz + d) + act2

|cz + d |2 + |c |2 t2
,

t

|cz + d |2 + |c |2 t2

)
,

where z = x + i y .
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Geodesic lines and planes in half-space model of H3

Isom(H3) is generated by reflections with respect to geodesic planes.
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Manifolds & orbifolds

Definition
Manifolds and orbifolds having a complete geometric structure can be
presented as the quotient space X/Γ, where X is one of known geometries
and Γ is a discrete isometry group acting on X with fixed points in general.

2-dim case: X = S2,E2 or H2.
3-dim case: X = S3,E3,H3, S2 ⊕ E1,H2 ⊕ E1,Nil , Sol , ˜PSL(2,R).
In 3-dim case the image of fixed points of group Γ under canonical map
X → X/Γ is generally a knot, link or knotted graph. In n-dim case it has
dimension (n − 2). Today we consider only 3-dim case.

Example (Hilden, Lozano, Motesinos, 92)

Let X = H3 and Γ = F2n = 〈a1, . . . , a2n : ajaj+1 = aj+2, j mod 2n〉, n ≥ 4
is Fibonacci group acting on X by isometries. Then X/Γ is 3-dimensional
sphere and the image of fixed points of X in X/Γ is the figure-eight knot.
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Cone-manifolds

In general, the presence of a geometrical structure is not necessarily
associated with discrete groups. As a result a cone-manifold arises, which
can be viewed as a direct generalization of orbifold. In turn, in the
definition of cone-manifold, we require just a local uniformization with the
above geometries.

Definition
A Euclidean cone-manifold is a metric space obtained as the quotient space
of a disjoint union of a collection of geodesic n-simplices in En by an
isometric pairing of codimension-one faces in such a combinatorial fashion
that the underlying topological space is a manifold. Hyperbolic and
spherical cone-manifolds are defined similarly.

The metric structure near each 1-cell is determined by the conical angle,
which is the sum of dihedral angles for the edges whose identification
produces this cell.
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Cone-manifolds

A point in the singular set with conical angle α has a neighborhood
isometric to a neighborhood of a point lying on the edge of a wedge with
opening angle α whose sides are pairwise identified by way of rotating the
3-space about the edge of the wedge. We can visualise a cone-manifold as
a 3-manifold with an embedded graph on which the metric is distorted.
Furthermore, if we measure the length of an infinitesimal circle around a
component of the graph then instead of the standard 2πε we obtain αε,
where α is the conical angle along the component of the graph.
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From polyhedra to knots and links

Borromean Rings cone-manifold and Lambert cube

This construction done by W. Thurston, D. Sullivan and J.M. Montesinos.
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Geometry of two bridge knots and links

The figure eight knot 41

It was shown in Thurston lectures notes that the figure eight compliment
S3 \ 41 can be obtained by gluing two copies of a regular ideal tetrahedron.
Thus, S3 \ 41 admits a complete hyperbolic structure. Later, it was
discovered by A.C. Kim, H. Helling and J. Mennicke that the n-fold cyclic
coverings of the 3-sphere branched over 41 produce beautiful examples of
the hyperbolic Fibonacci manifolds. Their numerous properties were
investigated by many authors. 3-dimensional manifold obtained by Dehn
surgery on the figure eight compliment were described by W. P. Thurston.
The geometrical structures on these manifolds were investigated in Ph.D.
thesis by C. Hodgson.
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Geometry of two bridge knots and links. 41– knot.

The following result takes a place due to Thurston, Kojima, Hilden,
Lozano, Montesinos, Rasskazov and Mednykh.

Theorem
A cone-manifold 41(α) is hyperbolic for 0 ≤ α < α0 = 2π

3 , Euclidean for
α = α0 and spherical for α0 < α < 2π − α0.

Other 5 exotic geometries on the figure eight cone-manifold were described
by E. Molnar, J. Szirmai and A. Vesnin.
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Geometry of two bridge knots and links. 41– knot.

The volume of the figure eight cone-manifold in the spaces of constant
curvature is given by the following theorem.

Theorem (Rasskazov, Mednykh, 2006)
Let V(α) = Vol 41(α) and `α is the length of singular geodesic of 41(α).
Then

(H3) V(α) =
∫ α0

α arccosh (1 + cos θ − cos 2θ)dθ, 0 ≤ α < α0 = 2π
3 ,

(E3) V(α0) =
√
3

108 `
3
α0
,

(S3) V(α) =
∫ α
α0

arccos (1 + cos θ − cos 2θ)dθ, α0 < α ≤ π, V(π) = π2

5 ,

V(α) = 2V(π)−V(2π − α), π ≤ α < 2π − α0.
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We study a geometric structure on the cone-manifold 41(α, α; γ) whose
underlying space is the three-dimensional sphere S3 and the singular set Σ
is the figure-eight knot with additional bridge.

Using Wirtinger’s algorithm, one can find the fundamental group
π1(S3 \ Σ). We find a representation of its generators by rotation matrices
in E3 or H3. This allows to construct “butterfly” polyhedron in E3 or H3 as
a fundamental polyhedron for the cone-manifold 41(α, α; γ). We obtain
sufficient conditions for the existence of Euclidean or hyperbolic structure
on 41(α, α; γ).

N.Abrosimov Geometry of a knotted θ-graph 12 / 24



Consider the holonomy mapping ϕ : π1(S3 \ Σ)→ Isom(E3) carrying the
generators s and t of the fundamental group
π1(S3 \ Σ) = 〈s, t, ` : s` = `s, ` = s t s t−1s−1t s t s−1t−1〉 to the linear
transformations S = (x − e3)S + e3, T = (x + e3)T − e3, where
e3 = (0, 0, 1) while S ,T are rotation matrices

S =
1

M2 + 1

 M2 + cos θ sin θ −2M sin θ
2

sin θ M2 − cos θ 2M cos θ2
2M sin θ

2 −2M cos θ2 −1 + M2

 ,

T =
1

M2 + 1

 M2 + cos θ − sin θ −2M sin θ
2

− sin θ M2 − cos θ −2M cos θ2
2M sin θ

2 2M cos θ2 −1 + M2


where M = cot α2 and θ is the angle of relative rotation between singular
components. The holonomy mapping carries the element ` into the rotation
through angle γ about the singular component corresponding to the bridge
of the knot. Refer as the holonomy group of the manifold 41(α, α; γ) to
the group generated by the rotations S, T through angle α about the
singular component of the fundamental set.
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Fundamental polyhedron for the cone-manifold 41(α, α; γ)
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Fundamental polyhedron F can be realized in E3, H3 and S3. Identify the
curvilinear facets of F via isometric transformations S and T using the rule

S : P1P0P9P8P7P6 → P1P2P3P4P5P6,

T : P4P5P6P7P8P9 → P4P3P2P1P0P9.
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Euclidean structure on 41(α, α; γ)

Theorem (Abr., Mednykh, Sokolova)
The cone manifold 41(α, α; γ) has an Euclidean structure if

5 + 6M2 + M4 − 60X 2 − 12M2X 2 + 80X 4 = 0,

where M = cot α2 , α ∈ (π3 ,
2π
3 ),X = cos θ2 , θ ∈ (0, π2 ) and θ is the angle of

relative rotation between singular components.

In particular, 41(α, α; 2π) = 41(α) is a Euclidean cone-manifold whose
singular set is the figure-eight knot with conical angle α (the bridge
disappears and we get the situation which was previously known).
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Euclidean structure on 41(α, α; γ)

Theorem (Abr., Mednykh, Sokolova)
If cone-manifold 41(α, α; γ) admits an Euclidean structure then its
normalised volume

Vol(41(α, α; γ)) =
8X
√

1− X 2(M4 − 50M2X 2 + 150X 2 − 25)

3M2(1 + M2 − 8X 2)2
.
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Caley-Klein model of hyperbolic 3-space

Consider Minkowski space R4
1 with Lorentz scalar product

〈X ,Y 〉 = −x1 y1 − x2 y2 − x3 y3 + x4 y4. (1)

The Caley-Klein model of hyperbolic space is the set of vectors
K = {(x1, x2, x3, 1) : x21 + x22 + x23 < 1} forming the unit 3-ball in the
hyperplane x4 = 1. The lines and planes in K are just the intersections of
ball K with Euclidean lines and planes in the hyperplane x4 = 1.
The distance between vectors V and W is defined as

ch ρ (V ,W ) =
〈V ,W 〉√

〈V ,V 〉 〈W ,W 〉
. (2)

A plane in K is a set P = {V ∈ K : 〈V ,N〉 = 0}, where N is a normal
vector to the plane P.
Every of four dihedral angles between the planes P,Q with normal vectors
N,M are defined by relation

cos (̂P,Q) = ± 〈N,M〉√
〈N,N〉 〈M,M〉

. (3)
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We identify the isometry group Isom(H3) with positive Lorentz group
PSO(1, 3). The group O(1, 3) is the set of 4× 4 matrices with real
coefficients preserving the quadratic form (1). S stands for considering only
elements of determinant 1, P stands for factoring out the center.
Consider the representation of the fundamental group
π1(S3 \ Σ) = 〈s, t, ` : s` = `s, ` = s t s t−1s−1t s t s−1t−1〉 in PSO(1, 3).
Its generators s, t are the rotation matrices

Sh =
1

M2 + 1


M2 + X 2 − Y 2 2X Y −2 ch hM Y −2 sh hM Y

2X Y M2 − X 2 + Y 2 2 ch hM X 2 sh hM X
2 ch hM Y −2 ch hM X M2 − ch2 h − sh2 h −2 ch h sh h
−2 sh hM Y 2 sh hM X 2 ch h sh h M2 + ch2 h + sh2 h

 ,

Th =
1

M2 + 1


M2 + X 2 − Y 2 −2X Y −2 ch hM Y 2 sh hM Y
−2X Y M2 − X 2 + Y 2 −2 ch hM X 2 sh hM X

2 ch hM Y 2 ch hM X M2 − ch2 h − sh2 h 2 ch h sh h
2 sh hM Y 2 sh hM X −2 ch h sh h M2 + ch2 h + sh2 h

 ,

where M = cot α
2
,X = cos θ

2
,Y = sin θ

2
.
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The coordinates of the vertices of fundamental polyhedron F in
Caley-Klein model of H3 are as follows

P0 = (x , 0, 0, 1), P1 = (tX , tY , th h, 1),

P2 = (a, b, c , 1), P3 = (−a, b,−c , 1),

P4 = (−tX , tY ,− th h, 1), P5 = (−x , 0, 0, 1),

P6 = (−tX ,−tY , th h, 1), P7 = (−a,−b, c , 1),

P8 = (a,−b,−c , 1), P9 = (tX ,−tY ,− th h, 1),

Q0 = (0, 0, th h, 1), Q1 = (0, 0,− th h, 1).
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Hyperbolic structure on 41(α, α; γ)

Theorem (Abr., Mednykh, Sokolova)
The cone manifold 41(α, α; γ) has a hyperbolic structure if{

−1 + 3M2 + 12X 2 − 4M2X 2 − 16X 4 ≥ 0, (i)

5 + 6M2 + M4 − 60X 2 − 12M2X 2 + 80X 4 > 0, (ii)

where M = cot α2 , α ∈ (π3 ,
2π
3 ),X = cos θ2 , θ ∈ (0, π2 ) and θ is the angle of

relative rotation between singular components.

The equality in (i) is achieved under the condition γ = 2π, i.e. when the
bridge disappears. The equality in (ii) is achieved if there exist an Euclidean
structure on 41(α, α; γ).
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Natural isomorphism PSO(1, 3) ∼= PSL(2,C)

Now we identify the isometry group Isom(H3) with projective special linear
group PSL(2,C). The group PSL(2,C) is the automorphism group of the
Riemann sphere. Viewing the Riemann sphere as C ∪ {∞}, its
automorphisms are given as fractional linear transformations

z 7→ az + b

cz + d
, a, b, c , d ∈ C, ad − bc 6= 0.

The composition of these works like multiplication of the corresponding
matrices (

a b
c d

)
.

Matrices that are scalar multiples of each other define the same fractional
linear transformation, so we need to quotient out by the center.
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Hyperbolic structure on 41(α, α; γ)

Consider the representation of the fundamental group
π1(S3 \ Σ) = 〈s, t, ` : s` = `s, ` = s t s t−1s−1t s t s−1t−1〉 in PSL(2,C).
The generators s, t are the rotation matrices

A =

(
cosα i eρ/2 sinα

i e−ρ/2 sinα cosα

)
, B =

(
cosβ i e−ρ/2 sinβ

i eρ/2 sinβ cosβ

)
.

We put α = β and find that − cos γ2 = 1
2 tr(AB AB−1A−1B AB A−1B−1).

Theorem (Fricke)
Let w be a word composed by the product of finitely many 2× 2 matrices
A,B and their inverses (detA = detB = 1). Then there exist a polynomial
P(x , y , z) with integer coefficients such that trw = P(trA, trB, tr(AB)).
This is known as a Fricke polynomial.

This allowed us to prove the next theorem.
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Hyperbolic structure on 41(α, α; γ)

Theorem (Abr., Mednykh, Sokolova)
If cone-manifold 41(α, α; γ) admits a hyperbolic structure then

− cos
γ

2
= 8 u2 − 16 u4 + 5w − 40 u2w + 80 u4w + 32 u2w2 − 128 u4w2

− 20w3 + 64 u2w3 + 64 u4w3 − 64 u2w4 + 16w5,

where u = 1
2 trA = 1

2 trB = cosα, w = tr(AB−1) = u2 − (1− u2) ch ρ
and ρ is the complex hyperbolic distance between the singular components
of 41(α, α; γ).

This allows to find the complex hyperbolic distance ρ between the singular
components of the cone-manifold 41(α, α; γ) with given conical angles α, γ.
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Thank you for attention!
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