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Theorem. (Faudree, Magnant, Ozeki and Y 2012)

A line graph with δ ≥ 7 has a spanning subgraph in which

every component is a clique of order ≥ 3.
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=⇒ for any independent set S,

G has a 2-factor such that

each cycle contains ≤ 1 vertex in S.
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L(G) is k -connected ⇐⇒ G∗ is k -edge-connected (k ≤ 3).

A 2-edge-connected cubic graph has a 2-factor.

(Petersen 1891)



. . . . . .

We consider the graph G∗ obtained from a k -edge-connected

graph G by

・removing all end vertices and

・suppressing all vertices of degree 2.

L(G) is k -connected ⇐⇒ G∗ is k -edge-connected (k ≤ 3).

A 2-edge-connected cubic graph has a 2-factor.

(Petersen 1891)



. . . . . .

We consider the graph G∗ obtained from a k -edge-connected

graph G by

・removing all end vertices and

・suppressing all vertices of degree 2.

L(G) is k -connected ⇐⇒ G∗ is k -edge-connected (k ≤ 3).

A 2-edge-connected cubic graph has a 2-factor.

(Petersen 1891)



. . . . . .

We consider the graph G∗ obtained from a k -edge-connected

graph G by

・removing all end vertices and

・suppressing all vertices of degree 2.

L(G) is k -connected ⇐⇒ G∗ is k -edge-connected (k ≤ 3).

A 2-edge-connected cubic graph has a 2-factor.

(Petersen 1891)



. . . . . .

We consider the graph G∗ obtained from a k -edge-connected

graph G by

・removing all end vertices and

・suppressing all vertices of degree 2.

L(G) is k -connected ⇐⇒ G∗ is k -edge-connected (k ≤ 3).

A 2-edge-connected cubic graph has a 2-factor.

(Petersen 1891)



. . . . . .

A 2-edge-connected cubic graph has a 2-factor.

(Petersen 1891)

A 2-edge-connected graph with δ ≥ 3 has a spanning even

subgraph. (Fleischner 1992)

A 2-edge-connected simple graph with δ ≥ 3 has a
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in which every cycle contains ≥ 5 vertices.
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Theorem. (Jackson, Y 2009)

A 3-edge-connected cubic graph F has a 2-factor such that

every cycle of F contains ≥ 5 vertices.

Theorem. (Kaiser, Skrekovski 2008)

Every graph has an even subgraph

which intersects all 3-cuts and 4-cuts.

A 2-edge-connected cubic graph has a 2-factor

which intersects all 3-cuts and 4-cuts.

A 3-edge-connected cubic graph has a 2-factor F such that

every cycle of F contains ≥ 5 vertices and

F intersects all 3-cuts and 4-cuts.
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Sketch of the Proof.
Let G be a 3-edge-connected cubic graph.

If G has no 5-cycle,

=⇒ G has a desired 2-factor

by the theorem of Kaiser and Skrekovski.

A 5-cycle C of a cubic graph G is called good

if there is a 3-cut T such that |∂(C) ∩ T | ≥ 2.

If G has no bad 5-cycle,

=⇒ G has a desired 2-factor

by the theorem of Kaiser and Skrekovski.
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Suppose G has bad 5-cycles.

We will reduce following subgraphs obtained from 5-cycles.

An i-cell D is called good if D contains a good 5-cycle.
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1st. We will reduce bad 2-cells D recursively as follows:

We choose a next 2-cell which is bad in G|D and contains no

reduced vertices.

We continue this reduction till bad 2-cell is gone.
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u1 u2 u3 u1 u3

u5u6u7

u8

u5u7

u8

We choose a next 1-cell which is bad in G|D and contains no

reduced vertices.

We continue this reduction till bad 1-cell is gone.
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Finally we will obtain a 3-edge-connected cubic graph G′ in

which every bad cell contains a reduced vertex.

Actually we have to choose 5-cycles which will be reduced

much more carefully.

By the theorem of Kaiser and Skrekovski, we can obtains a

2-factor F ′ such that

・F ′ intersects all 3-cut and 4-cut in G′.

・if F ′ contains a 5-cycle C, then C contains a

reduced vertex.



. . . . . .

Finally we will obtain a 3-edge-connected cubic graph G′ in

which every bad cell contains a reduced vertex.

Actually we have to choose 5-cycles which will be reduced

much more carefully.

By the theorem of Kaiser and Skrekovski, we can obtains a

2-factor F ′ such that

・F ′ intersects all 3-cut and 4-cut in G′.

・if F ′ contains a 5-cycle C, then C contains a

reduced vertex.



. . . . . .

Finally we will obtain a 3-edge-connected cubic graph G′ in

which every bad cell contains a reduced vertex.

Actually we have to choose 5-cycles which will be reduced

much more carefully.

By the theorem of Kaiser and Skrekovski, we can obtains a

2-factor F ′ such that

・F ′ intersects all 3-cut and 4-cut in G′.

・if F ′ contains a 5-cycle C, then C contains a

reduced vertex.



. . . . . .

Finally we will obtain a 3-edge-connected cubic graph G′ in

which every bad cell contains a reduced vertex.

Actually we have to choose 5-cycles which will be reduced

much more carefully.

By the theorem of Kaiser and Skrekovski, we can obtains a

2-factor F ′ such that

・F ′ intersects all 3-cut and 4-cut in G′.

・if F ′ contains a 5-cycle C, then C contains a

reduced vertex.



. . . . . .

Finally we will obtain a 3-edge-connected cubic graph G′ in

which every bad cell contains a reduced vertex.

Actually we have to choose 5-cycles which will be reduced

much more carefully.

By the theorem of Kaiser and Skrekovski, we can obtains a

2-factor F ′ such that

・F ′ intersects all 3-cut and 4-cut in G′.

・if F ′ contains a 5-cycle C, then C contains a

reduced vertex.



. . . . . .

From the 2-factor F ′ of G′,

we construct a desired even subgraph F of G.

For 5-cycles, e.g.,
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From the 2-factor F ′ of G′,

we construct a desired even subgraph F of G.

For 5-cycles, e.g.,

u1 u2 u1 u2

u1 u2

u1 u2 u3

u'4 u'5

u1 u2 u3

u4 u5

u'4 u'5

u1 u2 u3

u'4 u'5

u1 u2 u3

u4 u5

u'4 u'5

u3

u'4 u'5

u1 u2 u3

u4 u5

u'4 u'5

u3

u'4 u'5

u3

u4 u5

u'4 u'5

Fig 5

(a)

(c)

u1 u2 u3

u'4 u'5

u1 u2 u3

u4 u5

u'4 u'5(b)
。
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For 1-cells, e.g.,

u1u1

u2

u1 u2

u6u7

u8

u3

u4

u5

u1

u7

u8

u3

u4

u5

u1 u2

u6u7

u8

u3

u4

u5

u1

u7

u8

u3

u4

u5

u1

u6u7

u8

u3

u4

u5

u1

u7

u8

u3

u4

u5

u1 u2

u6u7

u8

u3

u4

u5

u1

u7

u8

u3

u4

u5

u2

u6u7

u8

u3

u4

u5u7

u8

u3

u4

u5

u1 u2

u6u7

u8

u3

u4

u5

u1

u7

u8

u3

u4

u5

Fig6a

(a) (b)

(c) (d)

Fig6b

(a) (b)

For 2-cells, e.g.,
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For 1-cells, e.g.,

u1u1

u2

u1 u2

u6u7

u8

u3

u4

u5

u1

u7

u8

u3

u4

u5

u1 u2

u6u7

u8

u3

u4

u5

u1

u7

u8

u3

u4

u5

u1

u6u7

u8

u3

u4

u5

u1

u7

u8

u3

u4

u5

u1 u2

u6u7

u8

u3

u4

u5

u1

u7

u8

u3

u4

u5

u2

u6u7

u8

u3

u4

u5u7

u8

u3

u4

u5

u1 u2

u6u7

u8

u3

u4

u5

u1

u7

u8

u3

u4

u5

Fig6a

(a) (b)

(c) (d)

Fig6b

(a) (b)

For 2-cells, e.g.,

u1
u2

u3

wu1 u2 u3
u1

u2
u3

wu1 u2 u3

u6 u5 u4 u6 u5 u4

u1
u2

u3

wu1 u2 u3

u6 u5 u4

Fig 8a

(a) (b)

Fig 8b

!
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There is an infinite family of 3-edge-connected cubic

graphs in which every dominating even subgraph contains

9-cycles. （Cada, Chiba, Ozeki, Y 2015+)

Problem.
Does a 3-edge-connected cubic graph have a dominating even

subgraph in which every cycle contains ≥ 8 vertices?

Conjecture.
Any 3-edge-connected graph has a dominating even subgraph

in which every component contains ≥ 6 vertices.
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Does a 3-edge-connected cubic graph have a dominating even

subgraph in which every cycle contains ≥ 8 vertices?

Conjecture.
Any 3-edge-connected graph has a dominating even subgraph

in which every component contains ≥ 6 vertices.
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Thank you for your attention.


